metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.104D6, C6.142+ 1+4, (C4×D4)⋊6S3, (D4×C12)⋊7C2, Dic3⋊D4⋊6C2, C12⋊7D4⋊6C2, C4⋊C4.279D6, D6.D4⋊6C2, (C2×D4).208D6, Dic3.Q8⋊6C2, (C2×C6).84C24, C42⋊2S3⋊31C2, C42⋊3S3⋊15C2, D6⋊C4.65C22, C22⋊C4.129D6, C23.8D6⋊5C2, (C22×C4).219D6, C23.14D6⋊25C2, Dic3⋊4D4⋊44C2, C2.17(D4⋊6D6), (C2×C12).620C23, (C4×C12).237C22, (C2×D12).26C22, (C6×D4).302C22, C22.1(C4○D12), C4⋊Dic3.38C22, Dic3.20(C4○D4), C23.28D6⋊15C2, Dic3⋊C4.64C22, (C22×S3).29C23, C23.174(C22×S3), (C22×C12).78C22, C22.112(S3×C23), (C22×C6).154C23, (C2×Dic3).34C23, C3⋊3(C22.47C24), (C4×Dic3).201C22, C6.D4.102C22, (C22×Dic3).92C22, (C4×C3⋊D4)⋊38C2, C2.19(S3×C4○D4), C6.36(C2×C4○D4), C2.40(C2×C4○D12), (C2×Dic3⋊C4)⋊25C2, (C2×C6).14(C4○D4), (S3×C2×C4).198C22, (C3×C4⋊C4).320C22, (C2×C4).652(C22×S3), (C2×C3⋊D4).13C22, (C3×C22⋊C4).141C22, SmallGroup(192,1099)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.104D6
G = < a,b,c,d | a4=b4=c6=1, d2=b2, ab=ba, ac=ca, dad-1=ab2, cbc-1=dbd-1=a2b-1, dcd-1=c-1 >
Subgroups: 600 in 238 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4⋊D4, C22.D4, C42.C2, C42⋊2C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, C22.47C24, C42⋊2S3, C42⋊3S3, C23.8D6, Dic3⋊4D4, Dic3⋊D4, Dic3.Q8, D6.D4, C2×Dic3⋊C4, C4×C3⋊D4, C23.28D6, C12⋊7D4, C23.14D6, D4×C12, C42.104D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, C4○D12, S3×C23, C22.47C24, C2×C4○D12, D4⋊6D6, S3×C4○D4, C42.104D6
(1 67 55 23)(2 68 56 24)(3 69 57 19)(4 70 58 20)(5 71 59 21)(6 72 60 22)(7 61 29 17)(8 62 30 18)(9 63 25 13)(10 64 26 14)(11 65 27 15)(12 66 28 16)(31 87 75 43)(32 88 76 44)(33 89 77 45)(34 90 78 46)(35 85 73 47)(36 86 74 48)(37 93 81 53)(38 94 82 54)(39 95 83 49)(40 96 84 50)(41 91 79 51)(42 92 80 52)
(1 79 73 17)(2 62 74 42)(3 81 75 13)(4 64 76 38)(5 83 77 15)(6 66 78 40)(7 67 51 47)(8 86 52 24)(9 69 53 43)(10 88 54 20)(11 71 49 45)(12 90 50 22)(14 32 82 58)(16 34 84 60)(18 36 80 56)(19 93 87 25)(21 95 89 27)(23 91 85 29)(26 44 94 70)(28 46 96 72)(30 48 92 68)(31 63 57 37)(33 65 59 39)(35 61 55 41)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 16 73 84)(2 15 74 83)(3 14 75 82)(4 13 76 81)(5 18 77 80)(6 17 78 79)(7 72 51 46)(8 71 52 45)(9 70 53 44)(10 69 54 43)(11 68 49 48)(12 67 50 47)(19 94 87 26)(20 93 88 25)(21 92 89 30)(22 91 90 29)(23 96 85 28)(24 95 86 27)(31 38 57 64)(32 37 58 63)(33 42 59 62)(34 41 60 61)(35 40 55 66)(36 39 56 65)
G:=sub<Sym(96)| (1,67,55,23)(2,68,56,24)(3,69,57,19)(4,70,58,20)(5,71,59,21)(6,72,60,22)(7,61,29,17)(8,62,30,18)(9,63,25,13)(10,64,26,14)(11,65,27,15)(12,66,28,16)(31,87,75,43)(32,88,76,44)(33,89,77,45)(34,90,78,46)(35,85,73,47)(36,86,74,48)(37,93,81,53)(38,94,82,54)(39,95,83,49)(40,96,84,50)(41,91,79,51)(42,92,80,52), (1,79,73,17)(2,62,74,42)(3,81,75,13)(4,64,76,38)(5,83,77,15)(6,66,78,40)(7,67,51,47)(8,86,52,24)(9,69,53,43)(10,88,54,20)(11,71,49,45)(12,90,50,22)(14,32,82,58)(16,34,84,60)(18,36,80,56)(19,93,87,25)(21,95,89,27)(23,91,85,29)(26,44,94,70)(28,46,96,72)(30,48,92,68)(31,63,57,37)(33,65,59,39)(35,61,55,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,16,73,84)(2,15,74,83)(3,14,75,82)(4,13,76,81)(5,18,77,80)(6,17,78,79)(7,72,51,46)(8,71,52,45)(9,70,53,44)(10,69,54,43)(11,68,49,48)(12,67,50,47)(19,94,87,26)(20,93,88,25)(21,92,89,30)(22,91,90,29)(23,96,85,28)(24,95,86,27)(31,38,57,64)(32,37,58,63)(33,42,59,62)(34,41,60,61)(35,40,55,66)(36,39,56,65)>;
G:=Group( (1,67,55,23)(2,68,56,24)(3,69,57,19)(4,70,58,20)(5,71,59,21)(6,72,60,22)(7,61,29,17)(8,62,30,18)(9,63,25,13)(10,64,26,14)(11,65,27,15)(12,66,28,16)(31,87,75,43)(32,88,76,44)(33,89,77,45)(34,90,78,46)(35,85,73,47)(36,86,74,48)(37,93,81,53)(38,94,82,54)(39,95,83,49)(40,96,84,50)(41,91,79,51)(42,92,80,52), (1,79,73,17)(2,62,74,42)(3,81,75,13)(4,64,76,38)(5,83,77,15)(6,66,78,40)(7,67,51,47)(8,86,52,24)(9,69,53,43)(10,88,54,20)(11,71,49,45)(12,90,50,22)(14,32,82,58)(16,34,84,60)(18,36,80,56)(19,93,87,25)(21,95,89,27)(23,91,85,29)(26,44,94,70)(28,46,96,72)(30,48,92,68)(31,63,57,37)(33,65,59,39)(35,61,55,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,16,73,84)(2,15,74,83)(3,14,75,82)(4,13,76,81)(5,18,77,80)(6,17,78,79)(7,72,51,46)(8,71,52,45)(9,70,53,44)(10,69,54,43)(11,68,49,48)(12,67,50,47)(19,94,87,26)(20,93,88,25)(21,92,89,30)(22,91,90,29)(23,96,85,28)(24,95,86,27)(31,38,57,64)(32,37,58,63)(33,42,59,62)(34,41,60,61)(35,40,55,66)(36,39,56,65) );
G=PermutationGroup([[(1,67,55,23),(2,68,56,24),(3,69,57,19),(4,70,58,20),(5,71,59,21),(6,72,60,22),(7,61,29,17),(8,62,30,18),(9,63,25,13),(10,64,26,14),(11,65,27,15),(12,66,28,16),(31,87,75,43),(32,88,76,44),(33,89,77,45),(34,90,78,46),(35,85,73,47),(36,86,74,48),(37,93,81,53),(38,94,82,54),(39,95,83,49),(40,96,84,50),(41,91,79,51),(42,92,80,52)], [(1,79,73,17),(2,62,74,42),(3,81,75,13),(4,64,76,38),(5,83,77,15),(6,66,78,40),(7,67,51,47),(8,86,52,24),(9,69,53,43),(10,88,54,20),(11,71,49,45),(12,90,50,22),(14,32,82,58),(16,34,84,60),(18,36,80,56),(19,93,87,25),(21,95,89,27),(23,91,85,29),(26,44,94,70),(28,46,96,72),(30,48,92,68),(31,63,57,37),(33,65,59,39),(35,61,55,41)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,16,73,84),(2,15,74,83),(3,14,75,82),(4,13,76,81),(5,18,77,80),(6,17,78,79),(7,72,51,46),(8,71,52,45),(9,70,53,44),(10,69,54,43),(11,68,49,48),(12,67,50,47),(19,94,87,26),(20,93,88,25),(21,92,89,30),(22,91,90,29),(23,96,85,28),(24,95,86,27),(31,38,57,64),(32,37,58,63),(33,42,59,62),(34,41,60,61),(35,40,55,66),(36,39,56,65)]])
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3 | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | ··· | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 12 | 12 | 2 | 2 | ··· | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | D6 | D6 | C4○D4 | C4○D4 | C4○D12 | 2+ 1+4 | D4⋊6D6 | S3×C4○D4 |
kernel | C42.104D6 | C42⋊2S3 | C42⋊3S3 | C23.8D6 | Dic3⋊4D4 | Dic3⋊D4 | Dic3.Q8 | D6.D4 | C2×Dic3⋊C4 | C4×C3⋊D4 | C23.28D6 | C12⋊7D4 | C23.14D6 | D4×C12 | C4×D4 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | Dic3 | C2×C6 | C22 | C6 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 4 | 8 | 1 | 2 | 2 |
Matrix representation of C42.104D6 ►in GL4(𝔽13) generated by
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 3 | 6 |
0 | 0 | 7 | 10 |
1 | 0 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 8 |
1 | 2 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 12 | 0 |
1 | 2 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 5 | 5 |
G:=sub<GL(4,GF(13))| [8,0,0,0,0,8,0,0,0,0,3,7,0,0,6,10],[1,12,0,0,0,12,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,2,12,0,0,0,0,1,12,0,0,1,0],[1,0,0,0,2,12,0,0,0,0,8,5,0,0,0,5] >;
C42.104D6 in GAP, Magma, Sage, TeX
C_4^2._{104}D_6
% in TeX
G:=Group("C4^2.104D6");
// GroupNames label
G:=SmallGroup(192,1099);
// by ID
G=gap.SmallGroup(192,1099);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,758,100,794,136,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,c*b*c^-1=d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations